الموقع الشخصي لـ

ابو زيد انصاري

كلية العلوم - قسم الرياضيات

آخر الأبحاث العلمية

  1.      Abu Zaid Ansari, Classification of additive mappings on certain rings and algebras, Arabian Journal of Mathematics, (2023). https://doi.org/10.1007/s40065-023-00448-7

 

2.      Abu Zaid Ansari, Faiza Shujat, Extension of φ-centralizers on semiprime rings, International Journal of Mathematics and Computer Science, 19(2024), no. 2, 435–438.

      http://ijmcs.future-in-tech.net/Volume19.2.htm

 

3.      Abu Zaid Ansari, Nadeem ur Rehman and Faiza Shujat, On Lie ideals with generalized derivations and power values on prime rings, Palestine Journal of mathematics, Vol. 12(3) (2023), 194–198. https://pjm.ppu.edu/paper/1484-lie-ideals-generalized-derivations-and-power-values-prime-rings

 

4.      Abu Zaid Ansari, Characterization of additive mappings on semiprime rings, Rendiconti del Circolo Matematico di Palermo Series 2.

      https://doi.org/10.1007/s12215-023-00959-4

 

5.      Abu Zaid Ansari, Faiza Shujat, Functional identities on prime rings with involution, International Journal of Mathematics and Computer Science, 19(2024), no. 1, 151–155.

http://ijmcs.future-in-tech.net/Volume19.1.htm

 

6.      Abu Zaid Ansari, Faiza Shujat and Ahlam Fallatah, Generalized differential identities on prime rings and algebras, AIMS Mathematics, 8(10): 22758–22765.

      10.3934/math.20231159

 

7.      Abu Zaid Ansari, Additive mappings satisfying algebraic identities in semiprime rings, Discussiones Mathematicae - General Algebra and Applications, 43 (2023), 327–337. (SJR IF 0.2) [Q4].

https://doi.org/10.7151/dmgaa.1422

 

8.      Abu Zaid Ansari, Nadeem ur Rehman, Identities on additive mappings in semiprime rings. Matematychni Studii, 58(2), (2022), 133-141. (SJR I.F. 0.625) [Q2].

https://doi.org/10.30970/ms.58.2.133-141

 

9.      Abu Zaid Ansari, Faiza Shujat, Jordan *-derivations on Standard Operator Algebras" FILOMAT, 37:1 (2023), 37–41 (SCI I.F. 0.988) [Q2].

https://doi.org/10.2298/FIL2301037A

 

10.  Abu Zaid Ansari, Faiza Shujat, Additive mappings on semiprime rings functioning as centralizers, Australian Journal of Mathematical Analysis and Applications, Vol. 19 (2022), No. 2, Art. 11, 9 pp. (SJR IF 0.13) [Q4]

https://ajmaa.org/searchroot/files/pdf/v19n2/v19i2p11.pdf

 

11.  Abu Zaid Ansari, Abdulkafi Mohammed Saeed, Abhinav Singhal, Rakhi Tiwari, Faiza Shujat & Bhuvaneshvar Kumar, Modeling of the Liouville–Green method to approximate the mechanical waves in functionally graded and piezo material with a comparative study, waves in random and complex media, published online: 22 Mar 2022. (SCI IF 4.05) [Q1] (Currently Q2)

https://doi.org/10.1080/17455030.2022.2049921

 

12.  Abu Zaid Ansari, Faiza Shujat, Semiprime ring with involution and centralizer, Journal of applied mathematics and informatics, Vol. 40(2022), No. 3 - 4, pp. 709 - 717. (SJR IF 0.16) [Q4]

https://doi.org/10.23091/japm.2022.099

 

13.  M. Khalifa Saad, Abu Zaid Ansari, M. Akram and F. Alharbi, Timelike Surfaces with a Common Line of Curvature in Minkowski 3-Space, The Australian Journal of Mathematical Analysis and Applications, Vol. 19 (2022), No. 1, Art. 4, 12 pp. (SJR IF 0.13) [Q4]

https://ajmaa.org/searchroot/files/pdf/v19n1/v19i1p4.pdf

 

14.  Abu Zaid Ansari, Concerning multiplicative (generalized) (α, β)-derivations in prime rings, Annals of Mathematics and Computer Science, Vol 9 (2022) 86-90.

https://annalsmcs.org/index.php/amcs/article/view/112/67

 

15.  Abu Zaid Ansari, Some results on centralizers of semiprime rings, Journal of Applied and Pure Mathematics, Vol. 4 (2022), No. 3 - 4, pp. 99 - 105.

https://doi.org/10.23091/japm.2022.099

 

16.  Faiza Shujat, Abu Zaid Ansari, and Kapil Kumar, Commuting symmetric bi-semiderivations on rings, Adv. Math. Sci. J. 10 (2021), no.9, 3233–3240.

https://doi.org/10.37418/amsj.10.9.12

 

17.  Abu Zaid Ansari, Faiza Shujat, Additive mappings covering generalized (α1, α2)-derivations in semiprime rings, Gulf Journal of Mathematics, Vol. 11, Issue 2 (2021), 19-26.

https://gjom.org/index.php/gjom/article/view/495

 

18.  M. Khalifa Saad, Abu Zaid Ansari, M. Akram And F. Alharbi, Spacelike surfaces with a common line of curvature in Lorentz-Minkowski 3-space, WSEAS Transactions on Mathematics, 2021, 20, pp. 207–217. SJR I.F. 0.21 [Q4] 

 

19.  Faiza Shujat , Abu Zaid Ansari, A note on generalized Jordan m-derivations in rings, JP Journal of Algebra, Number Theory and Applications, Volume 49, Number 1, 2021, Pages 11-21. [Q4] 

      http://www.pphmj.com/abstract/13656.htm

 

20.  Faiza Shujat, Abu Zaid Ansari, On prime rings and symmetric generalized bi-semiderivations" Mathematics Today Volume 36 Issue 2 (December 2020), 19-22.

 

21.  Abu Zaid Ansari, On identities with additive mappings in rings, Iranian Journal of Mathematical Sciences and Informatics Vol. 15, No. 1 (2020), pp 125-133. SJR I.F. 0.32 [Q2]

      http://ijmsi.ir/article-1-1051-en.html

 

22.  Faiza Shujat, Shahoor Khan, Abu Zaid Ansari, On centralizers and multiplicative generalized derivations in rings, Italian Journal of Pure and Applied Mathematics, N. 44, 2020 (229-237). SJR I.F. 0.22 [Q4]

https://ijpam.uniud.it/journal/onl_2020-44.htm

 

23.  Abu Zaid Ansari, Faiza Shujat & Gofran Alhendi, Ideals, Centralizers and Symmetric Bi-derivations on prime rings, International Journal of Mathematics and Computer Science, 15 (2020), no. 2, 549–557. SJR I.F. 0.30 [Q4]

http://ijmcs.future-in-tech.net/15.2/R-Shujat.pdf

 

24.  Faiza Shujat, Abu Zaid Ansari & Fatma Salama, Additive mappings act as a generalized left (α, β)-derivation in rings, Bollettino dell'Unione Matematica Italiana, (2019) 12:425–430. (Springer) SJR I.F. 0.42 [Q2]

https://link.springer.com/article/10.1007/s40574-018-0165-1

 

25.  Faiza Shujat, Abu Zaid Ansari, Shahoor Khan, Strong commutativity preserving biderivations on prime rings, Journal of Mathematical and Computational Science, 7 (2017), No. 2, 230-236. SJR I.F. 0.12 [Q4]

https://scik.org/index.php/jmcs/article/view/2808

 

26.  Giovanni Scudo, Abu Zaid Ansari, Generalized derivations on Lie ideals and power values on prime rings, Mathematica Slovaca, 65 (2015), No. 5, 975–980. (Springer) SCI I.F. 0.77 [Q2]

https://www.degruyter.com/document/doi/10.1515/ms-2015-0066/html

 

27.  Nadeem Ur Rehman, Abu Zaid Ansari, On additive mappings in *-ring with identity element, Vietnam Journal of Mathematics, December 2015, Volume 43, Issue 4, pp 819-828. (Springer) SJR I.F. 0.44 [Q2]

https://doi.org/10.1007/s10013-015-0163-x

 

28.  Vincenzo De Filippis, Nadeem Ur Rehman, Abu Zaid Ansari, Lie Ideals and generalized derivations in semiprime rings, Iranian Journal of Mathematical Sciences and Informatics, Vol. 10, No. 2 (2015), pp 45-54. SJR I.F. 0.32 [Q2]

http://ijmsi.ir/article-1-481-en.html

 

29.  Nadeem Ur Rehman, Radwan Mohammed AL-Omary, Abu Zaid Ansari, On Lie ideals of *-prime rings with generalized derivationsBoletín de la Sociedad Matemática Mexicana, April 2015, Volume 21, Issue 1, pp 19-26. (Springer) SJR I.F. 0.29 [Q3]

https://doi.org/10.1007/s40590-014-0029-3

 

30.  Abu Zaid Ansari, Faiza Shujat, Additive mappings satisfying algebraic condition in rings, Rendiconti del Circolo Matematico di Palermo, Vol. 65, No. 8 (2014), 1247-1256. (Springer) SJR I.F. 0.40 [Q3].

https://doi.org/10.1007/s12215-014-0153-y

 

31.  Nadeem Ur Rehman, Abu Zaid Ansari and Tarannum Bano, On generalized Jordan *-derivation in rings, Egyptian Mathematical Society, Vol 22 (2014), 11–13.  (Elsevier)

https://doi.org/10.1016/j.joems.2013.04.011

 

32.  Nadeem Ur Rehman, Abu Zaid Ansari, Generalized left derivations acting as homomorphisms and anti-homomorphisms on Lie ideal of rings, Journal of the Egyptian Mathematical Society (2014) 22, 327–329. (Elsevier)

https://doi.org/10.1016/j.joems.2013.12.015

 

33.  Faiza Shujat, Abu Zaid Ansari, Symmetric skew 4-derivations on prime rings, Journal of Mathematical and Computational Science, 4 (2014), No. 4, 649-656. SJR I.F. 0.12 [Q4]

https://scik.org/index.php/jmcs/article/view/1616/0

 

34.  Vincenzo De Filippis, Nadeem Ur Rehman, Abu Zaid Ansari, Some commutatively conditions for prime and semiprime rings with generalized derivations, International Journal of Math. And Math. Science, Volume 2014, Article ID 216039, 8 pages, SJR I.F. 0.21 [Q4]

http://dx.doi.org/10.1155/2014/216039   

 

35.  Nadeem Ur Rehman, Abu Zaid Ansari, On Lie ideals and generalized Jordan left derivation of prime rings, Ukrainian Mathematical Journal 65, pages1247–1256, (2014).  (Springer) SCI  I.F. 0.446 [Q3]

https://doi.org/10.1007/s11253-014-0855-5

 

36.  Nadeem Ur Rehman, Abu Zaid Ansari, Claus Haetinger, A note on homomorphisms and anti-homomorphisms on *-rings, Thai J. of Maths 11 (3)  (2013),  741-750 SJR I.F. 0.24 [Q4]

http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/736/572

 

37.  Mohammad Ashraf, Nadeem Ur Rehman, Abu Zaid Ansari, An additive mapping satisfying an algebraic condition in rings with identity, Journal of Advanced Research in Pure Mathematics, Vol. 5, Issue. 2, 2013, pp. 38-45.

http://10.5373/jarpm.1333.022712

 

38.  Nadeem Ur Rehman, Abu Zaid Ansari, On Lie Ideals and symmetric bi-additive maps in rings, Palestine Journal of Mathematics, Vol. 2(1) (2013), 14-21.

https://pjm.ppu.edu/paper/33

 

39.  Abu Zaid Ansari, Giovanni Scudo, On generalized Jordan left *-derivation in rings, Rendiconti Sem. Math. Univ. Polytec. Torino Vol. 70, 4 (2012), 463-468. SJR I.F. 0.14 [Q4].

http://www.seminariomatematico.polito.it/rendiconti/70-4.html

 

Nadeem Ur Rehman, Abu Zaid Ansari, Additive mappings of semiprime rings with involution, Aligarh Bull. Math. Vol. 30, No. 1-2, (2011) p. 1-7. 

1.       Introductory course in Linear Algebra and its applications, publication to Mahi Publication ( ).978-81-939449-8-1ISBN

1. 1.       Working as a Co-PI of a Scientific Research Group Project in Islamic University of Madinah starting on dated 08\06\2022 Grant number 763/44.

 

2.       Working as a Co-PI of a Scientific Research Group Project in Islamic University of Madinah starting on dated 08\06\2022 Grant number 804/44.

 

3.       Worked as a PI of a Scientific Research Project (Tamayuz 2)in Islamic University of Madinah starting on dated 16\4\1442 AH Grant number 712/42.

 

4.       Worked as a PI of a Scientific Research Project (Taqamul) in Islamic University of Madinah starting on dated 22-06-2020 Grant number 143/41.

 

5.       Worked as a PI of a Scientific Research Project (Taqamul) in Islamic University of Madinah starting on dated 06-05-2019 Grant number 102/40.

 

6.       Worked as a PI of a Scientific Research Project (Taqamul) in Islamic University of Madinah grant number 84/40.

 

7.       Worked as a member of a Scientific Research Project in GROUP STAR at Taibah University, Madinah.

 

8.       Worked as a UGC Major Research Project Fellow entitled 'On generalized derivation in rings and their applications’ since 10/09/2009 to 10/09/2012. (F. No. 36-8/2008(SR))